Materiales de Estudio / Study Materials

Todos los materiales de estudio en esta sección son propiedad de sus autores. Dichos materiales se encuentran alojados en los servidores de sus propietarios. EMECEP Consultoría sólo comparte gratuitamente esta información mediante la indicación del enlace para acceder a dichos materiales, para que los estudiantes que deseen leerlos con fines de estudios o investigación.

Macroeconomics: an Introduction - Jesús Fernandez-Villaverde. University of Pennsylvania.

18.335J Introduction to Numerical Methods (MIT) - This course offers an advanced introduction to numerical linear algebra. Topics include direct and iterative methods for linear systems, eigenvalue decompositions and QR/SVD factorizations, stability and accuracy of numerical algorithms, the IEEE floating point standard, sparse and structured matrices, preconditioning, linear algebra software. Problem sets require some knowledge of MATLAB®.

18.303 Linear Partial Differential Equations: Analysis and Numerics (MIT) - This course provides students with the basic analytical and computational tools of linear partial differential equations (PDEs) for practical applications in science engineering, including heat/diffusion, wave, and Poisson equations. Analytics emphasize the viewpoint of linear algebra and the analogy with finite matrix problems. Numerics focus on finite-difference and finite-element techniques to reduce PDEs to matrix problems.

18.100B Analysis I (MIT) - Wehrheim, Katrin. Analysis I covers fundamentals of mathematical analysis: metric spaces, convergence of sequences and series, continuity, differentiability, Riemann integral, sequences and series of functions, uniformity, interchange of limit operations.

18.022 Calculus of Several Variables (MIT) - This is a variation on 18.02 Multivariable Calculus. It covers the same topics as in 18.02, but with more focus on mathematical concepts.

18.014 Calculus with Theory (MIT) - 18.014, Calculus with Theory, covers the same material as 18.01 (Single Variable Calculus), but at a deeper and more rigorous level. It emphasizes careful reasoning and understanding of proofs. The course assumes knowledge of elementary calculus.